Changes in ionic fluxes in uterine smooth muscle induced by carbachol

G. HAMON & M. WORCEL

Physiologie et Pharmacologie, Inserm U7-Hôpital Necker, 161 Rue de Sèvres, 75015-Paris

We studied the action of carbachol (CCh) on ²⁴Na. ⁴²K and ³⁶Cl fluxes. Uteri were obtained from stimulated with a virgin rats 0.5 mg/kgdiethylstilboestrol injection 24 h before the experiment. Strips of longitudinal smooth muscle were mounted isometrically and equilibrated with a normal Ringer solution at 37°C. For efflux studies they were equilibrated for at least 90 min to ²⁴Na, 120 min to ⁴²K and 90 min to ³⁶Cl. In polarized muscles CCh increased 42K and 36Cl effluxes, the increase being dose-dependent. Dose ⁴²K efflux curves and dose-muscle contraction curves are superimposable. ²⁴Na efflux was not affected. Influxes were determined by extrapolating to zero time the tissue radioactivity curve of the effluxes performed after 5 min exposure to ²⁴Na or ³⁶Cl, and 10 min to ⁴²K (Casteels, 1969). Na influx was increased by CCh 1.6×10^{-4} M (control 7.76 ± 0.52 mM kg⁻¹ 5 min⁻¹, n = 24 and CCh 9.57 \pm 0.51, n = 6, P < 0.05) as well as K⁺ influx (control 9.66 \pm 0.64 mM kg⁻¹ 10 min⁻¹, n = 24, CCh 12.42 \pm 1.42, n = 6, P < 0.05), but Cl influx was not affected (control $4.18 \pm 0.41 \text{ mM kg}^{-1}$ 5 min^{-1} n = 6. 3.45 ± 0.57 , n = 5, NS). Another series of strips was depolarized with a high K^+ (101 mm) solution. Under these conditions CCh still increased 42K and ³⁶Cl effluxes but its effect was greatly reduced by depolarization. On the other hand ²⁴Na efflux appeared increased by CCh under these conditions. Na influx was still increased (control $1.59 \pm 0.026 \text{ mM kg}^{-1} \quad 5 \text{ min}^{-1}, \quad n = 7, \quad \text{CCh} \\ 1.78 \pm 0.068 \quad n = 8, \quad P < 0.05), \quad \text{but } \quad \text{K}^+ \quad \text{influx}$ measured by the extrapolation technique was not modified by CCh (control 19.93 \pm 1.79 mM kg⁻¹ 10 min^{-1} , n = 12, CCh 18.13 ± 1.35 , n = 6, NS) and

Cl⁻ influx (control $10.82 \pm 1.00 \text{ mM kg}^{-1} \text{ 5 min}^{-1}$, n = 6, CCh 11.70 ± 1.33, n = 6, NS) was not affected. CCh seems to depolarize the rat uterine smooth muscle through an increase in Na permeability, since this drug always increases Na influx and Na + efflux of depolarized muscles. CCh seems to increase also the membrane permeability to K⁺ since it enhances both the K⁺ uptake and efflux of polarized tissues as well as K + efflux of depolarized tissues. Nonetheless, since K + efflux is reduced, but not suppressed by depolarization it has to be admitted that a great part of the increased K⁺ efflux of polarized tissues has to be secondary to the depolarization and spike discharges produced by the drug. The residual increase in Cl efflux in high K solutions suggests a possible primary increase in Clpermeability.

These results confirm partially the studies performed in guinea-pig taenia coli where CCh increases Na⁺, K⁺ and Cl⁻ efflux of depolarized muscles (Durbin & Jenkinson, 1961), but on the other hand in rat uterine smooth muscle dose ⁴²K efflux and dose-contraction curves are superimposable as opposed to guinea-pig ileum where Burgen & Spero (1968) found that dose ⁹⁸Rb efflux curves are displaced to the right of dose-contraction curves.

This work is supported by grants from the INSERM and DGRST (France).

References

CASTEELS, R. (1969). Calculation of the membrane potential in smooth muscle cells of the guinea pig's taenia coli, by Goldman equation. J. Physiol., 205, 193-208.

BURGEN, A.S.V. & SPERO, L. (1968). The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of the guinea pig intestine. *Brit. J. Pharmac.*, 34, 99-115.

DURBIN, R.P. & JENKINSON, D.H. (1961). The effect of carbachol on the permeability of depolarized smooth muscle to inorganic ions. *J. Physiol.*, 157, 74-99.